Selection and Agreement on the most appropriate modelling platform to develop Operating Rules for the Save Basin

10 February 2014

In support of:

Terms of Reference

- 1) General background to the modelling system.
- 2) The use of the model in transboundary systems in SADC with examples.
- The use of the model to support water resources planning and the development of operational rules.
- 4) The kind of management support that is provided.
- 5) The way the model addresses climate variability and climate change.
- 6) Discussion on whether changes to the modelling software or its application would be needed to address the needs of the Save Joint Basin Commission and CRIDF.
- 7) Any model licensing fees are required as either a once off or an annual fee.
- 8) Available training courses and back up support in the region.

Background to the modelling system

- Introduced to SA in the early 1980's, developed from "Acres Reservoir Simulation Program" – Canadian origin.
- Major enhancements for Southern African conditions:
 - Risk based analysis accounts for runoff variability and long droughts.
 - Drought restriction rules applying priority based multi-user risk criteria.
 - Salinity modeling blending, dilution rules & evaluate effect of pollution management measures.

(ToR: 1)

Validation and Renewal

· Verification by SA and International Experts

- Prof J.R. Stedinger and Prof D.P. Loucks (Cornell University, USA)
- Prof Fontanne and Prof Grieg (Colorado State University)
- Prof O'Connell Newcastle University
- Prof G.G.S. Pegram, Dr M.S. Basson and Dr R.S McKenzie (SA based)

· Continuous upgrading of the software systems:

- Object Orientation Design (from Fortran to Delphi Pascal).
- Modern user interface.
- Additional features such as groundwater-surface water Interaction.
- Ongoing research funded SA Water Research Commission.

Reference: "Probabilistic Management of Water Resources and Hydropower Systems' (Basson, Allan & Pegram., 1994)

Core simulation engines

· Linear network solver:

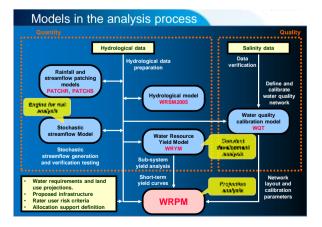
- Optimising flows in time step (monthly) according to userdefined weights which implements the required operating regime.
- Supply priority hierarchy achieved irrespective of the position of the abstraction in the system.
- Account for physical, continuity and connectivity constraints.


Risk analysis:

 Rigorous multi-site stochastic stream flow generator accounting for cross and serial correlations and maintain historical statistical characteristics.

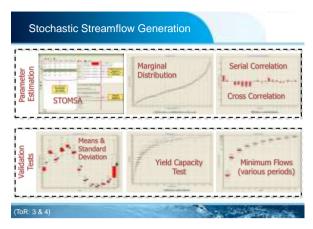
Purpose of WRYM and WRPM

Water Resource Yield Model:


- Constant development simulations to perform long-term historical and stochastic (risk based) yield analysis.
- Optimisation of inter sub-system operating rules.
- Generate short-term yield reliability characteristics as input to WRPM, driver of risk based drought restriction rules.
- Water Resource Planning Model:
 - Projection analysis for operational and development planning decision support.
 - Dynamic changing water use, new infrastructure, maintenance schedule and project the risk of drought curtailments.

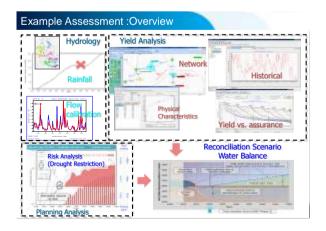
•	All major water resource systems in SA, including most stand alone
	system providing water to significant towns and villages.
•	Orange-Senqu River Commission: RSA, Lesotho, Botswana & Namibia.
•	Mozambique and Zimbabwe: Save, Buzi and Ruvuma Rivers
•	Mozambique: Incomati, Maputo, Pungwe River & Nacala Dam
•	Swaziland: Umbeluzi River
•	Namibia: Fish River, Neckertal Dam, Central Area Water Master Plan
•	Lesotho: Metolong Dam, Annual State of Water Resources
•	Botswana: Ntimbale Dam, allocation from Molatedi Dam
•	Seychelles: La Gogue Dam
•	Limpopo Watercourse Commission (LIMCOM)
	(Limpopo River Basin Monograph)
(ToR: 2	
N	lodel application in development
р	lanning processes

Applications in SADC:


Model use in water resource management	Model app planning p	olication in developmen processes	t
 Development planning Vaal River System 	WRYM and WRPM	Identify the need for intervention ↓ List all possible	Eng. / soc. / env. & inst.
 Allocation planning (reallocation) Marico River System Operating rule development 		intervention options ↓ Undertake initial screening process ↓	
– Orange River System	4	List most feasible options	Stochastic long-term analysis Prelim, implementation schedule
All based on assessing the risk of water availability and how it compares against specific risk criteria		Rank selected options ↓	 Initial estimate filling times Re-determine URVs
(ToR: 3 & 4)	WRPM 6 (ToR: 3 & 4)	Schedule selected option	Establish commissioning dates Refine implementation schedule Finalise URVs

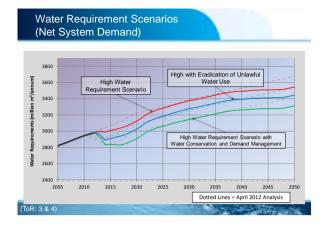
Why bother with risk analysis?

	Period of analysis (hydrological years)	Number of years	Firm yield (million m ³ /a)
	1930 – 1934	5	81
	1930 – 1939	10	69
	1930 – 1949	20	69
	1930 – 1969	40	69
	1930 – 1989	60	36
(To	R: 3 & 4)	listorical yield anal	ysis at Midmar Dam

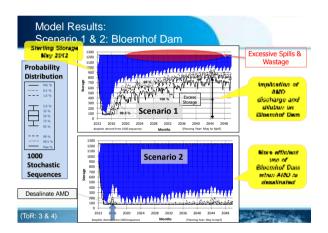


Model Features for Developmen Planning (WRPM)

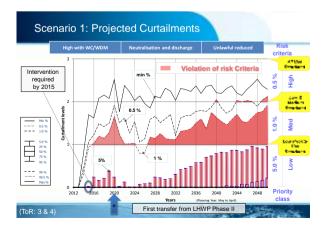
• Risk analysis for future planning:

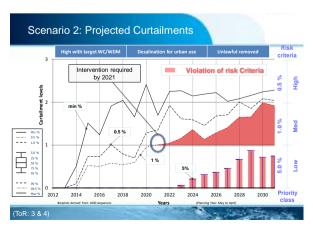

- Changing abstraction, return flows & land use over planning horizon.
- Progressive saving scenarios, Water Conservation and Water Demand Management programs.
- Schedule of pollution management measures by simulating short, medium and long term options.
- Analysis of alternative sequence schedules of options.
- Assess filling time requirements of new dams.
- Take account of the implication of current dam storage.
- Drought restriction rules part of development planning.

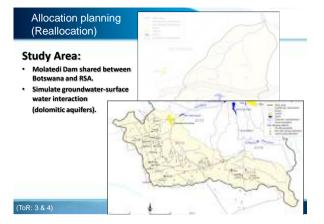
(ToR: 3 & 4)

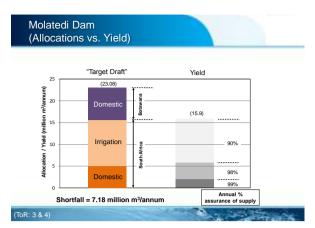


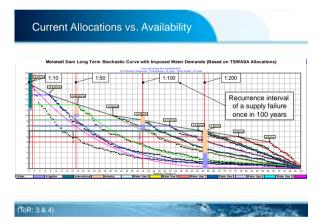
No	Water Requirements & Return Flows	Mine water Management (AMD)	Unlawful Water Use	LHWP Phase 2 (Polihali Dam)
1	High with target WC/WDM	Neutralisation and discharge into Vaal	Removed by 2014	Delivery 2020
2	High with target WC/WDM	Desalination for urban use 2016	Removed by 2014	Not implemented

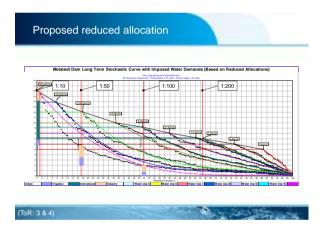






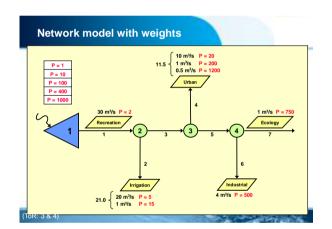

Example: Water User Risk Criteria

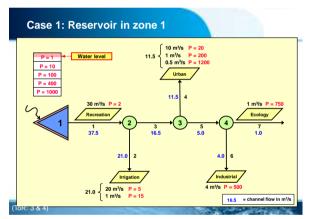

		User priority classification							
		(Criteria	a: risk of curta	ilments)					
User S	ectors	Low	Medium	High					
		(5 %)	(1%)	(0.5 %)					
	Carolonivg Noter	Propo	examplean Grante						
Domestic		30	20	50					
Industrial		10	Poise Converte Patro Chernical Ind						
Strategic indu	Provide and the second s	0	0	100					
Irrigation	Стори	50	30 47						
Restrictio	n levels: (Allow	1 Allow 6	2 3					
(ToR: 3 & 4)		Pulonity Line Reculated	Reduced	All Use Rechiced					

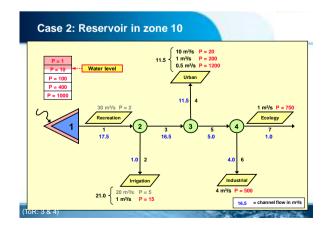


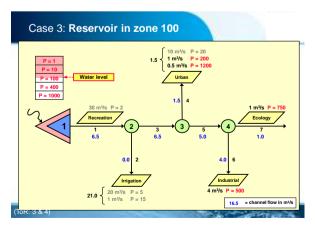
User Category	User Category Tswasa Allocation		% of Total	Possib	Possible Allocation		
	(mil	lion m³/a)		(mi	llion m ³ /a)		
RSA Urban		5	21.8		3.47		
Botswana Urban	7.3	31.9		5.07			
rrigation	10.6	46.3	7.36				
fotal:	22.9		100.0		15.9		
Description	_	Priority Cla	sses (Recurrend 1:50	ce Interval) 1:100	Total		
RSA Urban		1.11	1.54	0.81	3.47		
Botswana Urban		1.63	2.26	1.19	5.07		
Total within Class		2.74	3.80	2.00	8.54		
Cum Total:		8.54	5.80	2.00			
% In Class		32.1	44.5	23.4			
Irrigation		7.36	0.00	0.00	7.36		
Total within Class		10.10	3.80	2.00			
Cum Total:		15.90	5.80	2.00			

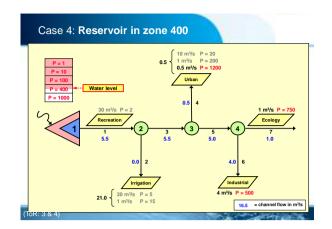
Model Features for	
Operating Rule Development	

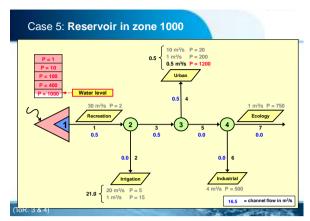

- Water supply and transfer priority rules:

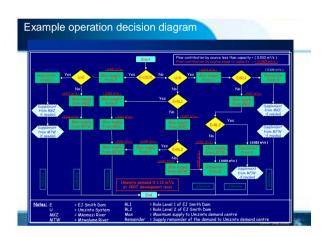

 Relative weights defines priority of supply between uses (Losses, Ecology, Domestic, Strategic, Irrigation)
- Drought management:
 - Water user priority categories and risk criteria
 - Short-term yield vs. reliability characteristics
- Dilution rules:
 - Direct source for dilutions
 - Indirect or distance source for dilution

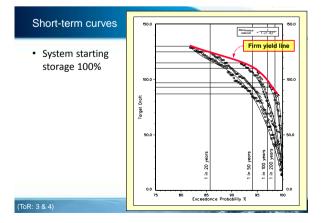

```
(ToR: 3 & 4)
```

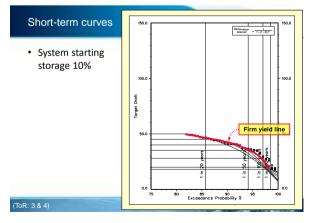

and the second

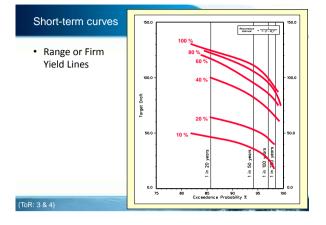

rules	Water resource system
 Narrative description: A distinguishing feature of several of these modeling systems is the use of optimization on a period by period basis (not fully dynamic) to "simulate" the allocation of water under various 	Runoff 30 m ³ /s (Pri. 8) 10 m ³ /s (Pri. 5)
prioritization schemas, such as wrate rights, without the presentation of perfect feedsnowledge of future hydrology and other uncertain information. This is a valid approach since use of optimization overcemes the disadvantage of employing summerous, numeidly prescriptive rules governing water allocation. Systems employing optimization in this matter archide [ARSP] MODSIM, OASIS, REALM, RiverWate, and WEAP and are therefore more akin to CALSIM.	Recreation 11.5 1 m ³ / ₂ (Pri. 4) 0.5 m ³ / ₂ (Pri. 1) Urban
Source: A strategic Review of CALSIM II and its Use for Water Planning, Management, and Operations in Central California", 2003. Link: www.calwater.ca.gov/science/pdf/calsim/CALSIM Review.pdf	1 m ³ s (P Ecology
	21.0 20 m/s (Pri. 7) Irrigation

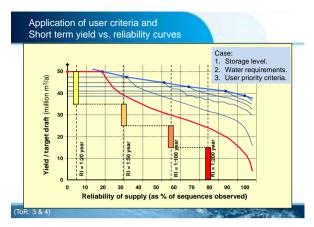




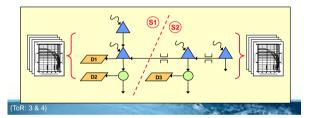


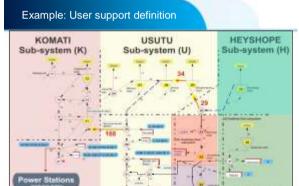


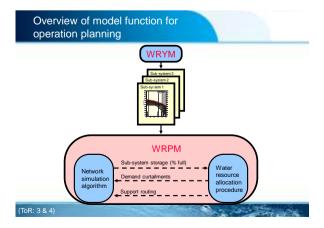


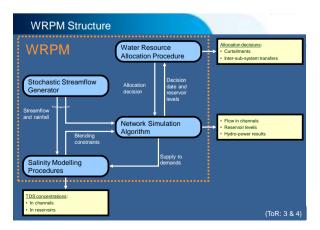


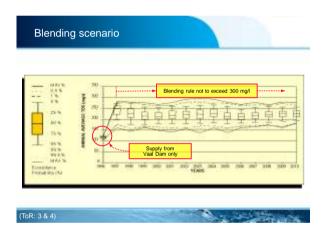
Description of water	Percentage							
requirement components	of total requirement	1:200 years (0.5 %)	1:100 years (1.0 %)	1:50 years (2.0 %)	1:20 years (5.0 %)			
Losses	24.5	100	-	-	-			
Wet industry	16.3	70	10	10	10			
Dry industry	12.2	70	15	5	10			
Domestic	47.0	40	20	20	20			
Total 100.0		63	13	12	12			
Priority class:		н	МН	ML	L			

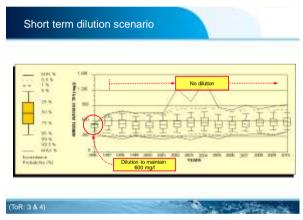


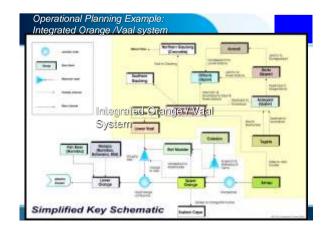


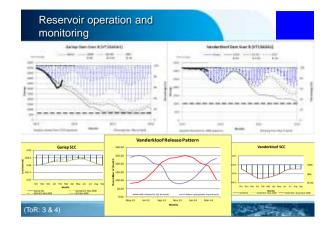

Subsystems & Short-term yield reliability

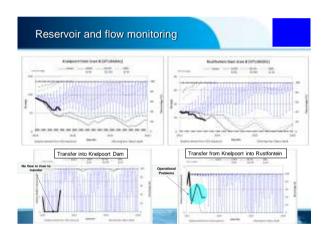

- Represent yield-reliability characteristics over short term (up to 5 years)
- Individual set for each defined subsystem



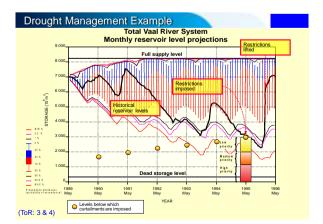

EU (166.34.28) H

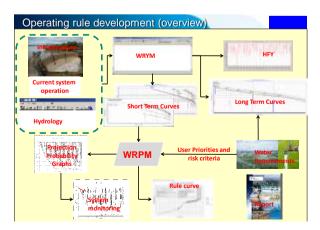




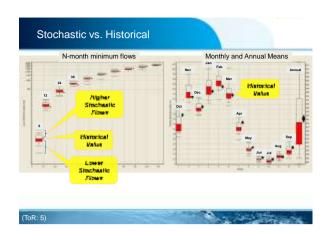

Integrated Orange / Vaal System Statistics

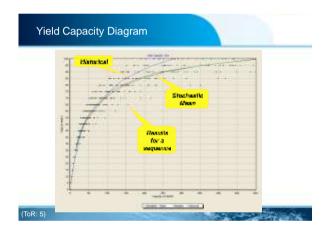
- 87 large and 279 small dams
- 1241 abstraction routes
- Drought Restrictions:

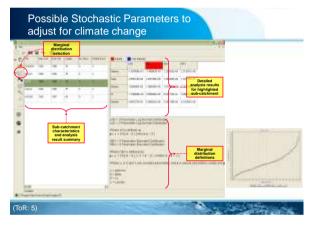

(ToR: 3 & 4)


- Vaal System: 8 Integrated and 5 stand alone subsystems.
- Orange System: 3 subsystems
- 11 Ecological water requirement structures

Descriptio											
of transfe	r 99.5	99	98	95	75	50	25	5	2	1	0.5
Heyshope Grootdra		0.8	1.0	1.7	4.1	5.4	6.9	10.4	11.5	12.5	13.7
Zaaihoek Grootdraa		(0.4)	(0.1)	0.1	1.0	1.8	2.6	3.8	4.2	4.5	5.3
Total ⁽²⁾	0.9	1.2	1.8	2.8	5.7	7.3	9.1	13.1	14.7	15.8	17.4
Notes: (1)	alues in bra										






Climate variability and climate change

- Stochastic model was designed to account for the variability experiences in Southern Africa.
- Extensively tested and applied in numerous studies.
- Stochastic analysis generate sequences that are wetter and drier than observed historically.
- Option of changing stochastic model parameters to alter flow generation.

(ToP: 5)	
(10K. 5)	

Need for software or application changes for Save

- WRYM already configured, ready to derive short-term yield reliability characteristics.
- WRPM to be configured for projection simulations.
- No need to change model software:
 - Configure priority supply rules through input data (weights).
 - No complex coding needed in primary or rule based languages.
 - Model can be used to evaluate and implement transparent cross boarder flow or ecological release requirement rules.

Licensing fees

- None, SA Government makes models available for use in SADC countries.
- The suit of models is the product of substantial R&D expenditure over many years.
- Continuous enhanced through WRC research and other government funding.
 - Rainfall stochastic generator.
 - Incorporate quantification of uncertainty.

(ToR: 7)

Training courses

- One or two day courses for managers and decision makers.
- Training for model users:
 Hydrology training 3 to 4 days.
 WRYM and WRPM 5 day course.
- Service provided on a time and cost basis.
- Part of post graduate courses at University of Pretoria and Stellenbosch University.
- SA Department of Water Affairs also provide training courses.

Backup support

- SA Department of Water Affairs has a user support helpdesk and web site Pretoria.
- Model enhancements funded by SA DWA & WRC.
- WRP provides the following services:
 - Model users that can assist with queries via e-mail.
 - Model development and enhancement services.
 - Application training to officials and consultants as part of water resource studies.

8

