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A hydrological perspective on evaporation: historical

trends and future projections in Britain

A. L. Kay, V. A. Bell, E. M. Blyth, S. M. Crooks, H. N. Davies

and N. S. Reynard
ABSTRACT
Evaporation is an important component of the hydrological cycle. Potential evaporation (PE) from a

vegetated surface is the amount of water that would be lost to the atmosphere were the supply

unlimited; actual evaporation (AE) is a fraction of PE dependent on soil wetness. Many formulae exist

for estimating PE from meteorological data. PE is usually a required input, with rainfall, for

hydrological modelling, but PE accuracy is generally considered less important than rainfall accuracy

for model performance. Few studies investigate historical evaporation trends in Britain, but generally

indicate increases. Most studies presenting future PE projections for Britain indicate increased

annual PE, but some suggest small decreases in some months. Limited consensus on the best

formulae to derive PE projections from climate model data is further complicated by possible

changes in plant behaviour (transpiration and growth) under higher carbon dioxide concentrations.

Appropriate PE estimation could be particularly important in regions where precipitation and PE are

in close balance, but PE uncertainty could be less important than climate model uncertainty for

hydrological impacts. Further research is needed into which PE formulae are likely to be most reliable

when applied with climate model data, and into climate change and plant feedbacks.
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INTRODUCTION
Evaporation transfers water from the land-surface to the

atmosphere, so is an important part of the hydrological

cycle. While there is ongoing debate on terminology

(Lhomme ; Cain et al. ), here the terms evaporation

and evapotranspiration each encompass transfer via both

evaporation (loss of water lying on a surface, e.g., lake,

soil, leaf) and transpiration (loss via plant stomata). Poten-

tial evaporation (PE or PET) is generally considered as the

amount of water that would be lost to the atmosphere if

there were no limits to soil-moisture supply (Federer et al.

). So actual evaporation (AE or AET) can be estimated

as a fraction of PE dependent on soil wetness; it can be less

than PE if soils are dry, but generally cannot be greater than

PE. PE is difficult to measure directly, although several tech-

niques attempt to measure AE. Some of the complexities of
measuring and modelling evaporation are described by

Shuttleworth ().

Four meteorological variables influence PE: radiation

(or sunshine), temperature, humidity (or vapour pressure)

and wind speed. Further variables influence the transpira-

tion component: plant height, rooting depth, leaf area and

vegetation roughness. Thus PE varies for different plant

types. To simplify matters, the ‘reference crop’ concept

was introduced, with average crop parameters provided

for estimation of reference PE. The reference crop is often

short grass (Pereira et al. ). Many formulae have been

developed for estimating PE, some for particular reference

crops and some where crop parameters can be specified.

The simplest, empirical formulae involve a single meteorolo-

gical variable (e.g., the temperature-based formulations of
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Thornthwaite (), Hamon () and Oudin et al.

(a)), while the most complex and physically based for-

mulae involve all four meteorological variables (e.g.,

Penman–Monteith; Monteith ), with a range in between

(e.g., Blaney–Criddle, involving temperature and sunshine

(Blaney & Criddle ), and Priestley–Taylor, involving

temperature and radiation (Priestley & Taylor )).

Oudin et al. (a) provide a useful summary of 17 vari-

ations found in the literature. Penman–Monteith is

recommended by the United Nations Food and Agricultural

Organisation (FAO) for deriving grass reference PE (Pereira

et al. ), and is used by the UK Climate Projections 09

(UKCP09) weather generator (Jones et al. ). The UK

Met Office Rainfall and Evaporation Calculation System

(MORECS; Thompson et al. ; Hough et al. ) and

the Met Office Surface Exchange Scheme (MOSES; Cox

et al. ) use modified versions of Penman–Monteith.

PE estimates are a required input for hydrological mod-

elling, alongside rainfall. PE changes, on their own or in

combination with rainfall changes, can contribute to

changes in hydrological indices like mean monthly river

flows. This paper provides some background on AE and

PE in Britain, influence of PE in hydrological modelling,

and the ways in which environmental change can affect

PE. A review of historical evaporation trends in Britain is

presented, with a global context. Future PE projections in

Britain are reviewed, with estimation difficulties and effects

of PE uncertainty on hydrological climate change impacts

discussed. Finally, a discussion and conclusions are pre-

sented. Although the focus here is the hydrological

perspective, evaporation is of interest in other areas (e.g.,

agriculture and ecology; Fisher et al. ), and many of

the same issues will apply.
BACKGROUND

Penman–Monteith PE, MORECS and MOSES

Penman–Monteith PE for short grass (m/s) is given by:

PEPM ¼ 1
λρw

Δ Rn �Gð Þ þ ρacp ea � edð Þ=ra
Δþ γ 1þ rc=rað Þ
with λ latent heat flux (J/kg), ρw water density (kg/m3), ρa air

density (kg/m3), cp specific heat of air (J/kg/WC), γ the psy-

chrometric constant (kPa/WC), ea¼ e(Ta)¼ 0.611exp

(17.27Ta/(Taþ 237.3)) saturation vapour pressure (kPa)

with Ta air temperature (WC), ed¼ e(Td) actual vapour

pressure (kPa) with Td dew-point temperature (WC),

Δ¼ dea/dTa¼ 17.27 × 237.3ea/(Taþ 237.3)2 the slope of the

vapour pressure curve (kPa/WC), Rn net solar radiation

(J/m2/s), G soil heat flux (J/m2/s), ra¼ 208/W2 aerodynamic

resistance (s/m) with W2 wind speed (m/s) at a 2 m height,

and rc canopy surface resistance of short grass (s/m). The

FAO recommend rc¼ 70 s/m for short grass (height

0.12 m) (Allen et al. ). The equation was developed for

daily weather data but its applicability has been demon-

strated for monthly mean data (Allen et al. ; Oudin

et al. ). Penman PE (Penman ) has rc¼ 0 and

G¼ 0, essentially representing loss from open water.

Penman–Monteith forms part of MORECS, which con-

verts daily synoptic weather station data into estimates of

weekly and monthly PE, AE and soil moisture deficit

(SMD) for short grass (and several other land covers) on a

40 × 40 km grid over Britain, for a range of soils defined by

their available water capacity (AWC; Hough & Jones ).

It implements a slightly modified version of Penman–Mon-

teith to that recommended by the FAO. In particular,

MORECS includes a correction for the assumption that sur-

face temperature equals the measured (air) temperature,

and uses monthly-varying rc for short grass (height 0.15 m),

ranging from 44.5 s/m (late spring) to 88.7 s/m (winter)

(average ∼73 s/m).

MOSES calculates water and energy fluxes between the

land-surface and atmosphere alongside estimates of carbon

dioxide (CO2) fluxes and their effects on vegetation physi-

ology (Cox et al. ). It can run operationally at a 2 km

resolution and hourly time-step (Smith et al. ), provid-

ing outputs including soil moisture, AE and PE for a range

of vegetated and non-vegetated surface types, with land-

cover maps used to determine the proportion of each type

within each grid-box. Like MORECS, MOSES calculates

PE using Penman–Monteith but with variable rc assumed

to depend on photosynthesis, which depends on air temp-

erature, radiation, humidity and vegetation type. MOSES

also includes processes such as canopy evaporation and sub-

limation from snow. MOSES now forms the basis of the
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Joint UK Land Environment Simulator (JULES; Best et al.

), which is a land-surface model used for research into

the carbon cycle and climate change at local and global

scales. JULES has been benchmarked against eddy-covari-

ance AE data from around the world (Blyth et al. ).

MOSES and JULES PE can be expected to change in line

with contemporary understanding of earth-system pro-

cesses, while MORECS PE reflects a standardised, but

arguably older, physical understanding.

PE, AE and hydrological modelling

PE estimates (or the variables to make them) are required

inputs for most hydrological models. This includes models

that provide continuous simulation of river flow at a catch-

ment outlet, like CATCHMOD (the Thames Catchment

Model; Wilby et al. ) or CLASSIC (Climate and LAnd

use Scenario Simulation In Catchments; Crooks & Naden

), and fully distributed area-wide models, like G2G

(Grid-to-Grid; Bell et al. ) or WASIM (WAter flow

and balance SIMulation; Kleinn et al. ). It also applies

to models such as the Palmer Drought Severity Index (Shef-

field et al. ). Typically, hydrological models estimate AE

as a fraction of PE dependent upon soil moisture, modelled

continuously using a water-accounting scheme.

PE is much less spatially and temporally variable than

rainfall, and highly seasonally predictable (Calder et al.

), so relatively simple data are considered sufficient to

obtain a closed water balance in hydrological modelling.

Thus rainfall accuracy is generally more important than

PE accuracy for hydrological model performance (Paturel

et al. ; Nandakumar &Mein ; Boughton ; Man-

ning et al. ). However, Parmele () shows varying

sensitivity to PE biases of þ10% and �20% in nine US

catchments, indicating that relative importance is likely to

vary by location, as well as how performance is assessed

(e.g., focussing on high or low flows). Also, some of the per-

ceived insensitivity of models to PE accuracy could be due

to recalibration, which can allow model parameters to com-

pensate for differing PE (Andréassian et al. ).

Oudin et al. (a) tested 27 PE formulations with four

rainfall–runoff models for 308 catchments in France, Austra-

lia and the USA. They found that PE based on temperature

or radiation often provided more accurate streamflow
simulations thanmore complex formulae, but PE from all for-

mulae was scaled by mean annual Penman PE, so only the

effects of variability were tested, and the models were recali-

brated for each set of inputs. Vorosmarty et al. () compare

11 PE formulae over theUSA and state ‘there is negative feed-

back, in that the drier the climate, and the larger the PE, the

less important the PE estimate becomes in determining AE

and thus runoff’. Manning et al. () suggest, for their mod-

elling of Thames water resources, ‘possible underestimation

of PE in very hot summers is offset in the subsequent hydro-

logical modelling because AE is limited by moisture supply

rather than determined by PE’.

The lower year-to-year variation in PE than rainfall even

means that climatological PE (i.e., a seasonal pattern dupli-

cated each year) can be used, rather than PE time-series.

Calder et al. () showed that using PE time-series led to

no clear improvement in SMD estimation compared with cli-

matological PE, for six grassland sites in Britain. Further,

Fowler () showed that using climatological monthly

mean PE distributed equally over each day of the month led

to no significant degradation in SMD estimation when com-

pared with either more complex climatological means or PE

time-series, for a site in Auckland,NewZealand. This was the

case even for years that were much wetter or dryer than aver-

age. Similarly, Oudin et al. (a, b) found no significant

improvements in river flow simulation when using PE time-

series, rather than climatological PE, as input to their four

rainfall–runoff models for 308 catchments, although they

noted that arid and/or small catchments (PE� rainfall;

area <150 km2) generally gained more benefit from time-

series than wet and/or large catchments.

PE, AE and hydrology in Britain

Monthly MORECS short grass PE is often used to provide

hydrological model inputs in Britain. Figure 1 shows maps

of MORECS annual mean rainfall, PE and AE (for short

grass and median AWC soils), and the ratios PE/rainfall

and AE/PE, for 1961–1990. There is a south/east to

north/west rainfall gradient, with an approximately reverse

PE gradient. However, the latter does not carry through to

AE, which decreases again in the south/east. The ratio

PE/rainfall shows the dryness of eastern Britain and wetness

(PE/rainfall << 1) of north/west Britain. The ratio AE/PE



Figure 1 | Maps of MORECS annual mean rainfall, PE and AE (mm) for 1961–1990 (for

short grass and median AWC soils), and the ratios PE/rainfall and AE/PE.
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shows that AE in the north/west is generally energy-limited

(AE∼ PE), with AE in the east generally water-limited

(AE<<PE). The dry/wet ‘boundary’ (where PE approaches

rainfall) and water-limited/energy-limited ‘boundary’ (where
Figure 2 | Rainfall (solid line, black), PE (long-dashed line, red), AE (short-dashed line, green) and

1990 (mm), for three contrasting catchments modelled with CLASSIC. For references
AE approaches PE) are related (e.g., Arora ), creating a

transition region where the supply of water and energy to

the land surface are in closer balance (hereby termed

energy-water balanced).

The maps in Figure 1, using annual mean data, are only

indicative; PE/rainfall and AE/PE patterns will vary month-

to-month and year-to-year (e.g., AE in the north-west could

also be water-limited in a hot, dry summer like that of

1976; see Rodda & Marsh ()). To illustrate the effect of

seasonal variation of PE and rainfall on AE and runoff,

Figure 2(a) shows 1961–1990 monthly means of these vari-

ables for three contrasting catchments (modelled with

CLASSIC): wet/energy-limited, energy-water balanced and

dry/water-limited. In summer, the wet/energy-limited catch-

ment shows PE< rainfall with near-constant AE close to

PE, while the energy-water balanced catchment has PE

close to rainfall and a slightly larger difference between

PE and AE. In the dry/water-limited catchment PE>

rainfall for the middle part of the year, leading to higher

SMDs and AE<<PE, with reduced AE as summer pro-

gresses (peak AE precedes peak PE). A given PE change

for a wet/energy-limited catchment is likely to result in

a similar AE change, whereas the same PE change for

a dry/water-limited catchment is likely to result in little

AE change (assuming little/no rainfall change). Thus
runoff (dotted line, blue), plotted as (a) monthly means; and (b) mean annual totals for 1961–

to colour see the online version of the paper: http://www.iwaponline.com/jwc/toc.htm.

http://www.iwaponline.com/jwc/toc.htm
http://www.iwaponline.com/jwc/toc.htm
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dry/water-limited catchments in the south/east are likely to

be less sensitive to PE accuracy. But wet/energy-limited

catchments in the north/west are also likely to be less sensi-

tive to PE accuracy, since they get more rainfall and lose a

much smaller proportion of rainfall to evaporation than

catchments in the south/east. Catchments most sensitive

to PE accuracy are those in the more energy-water balanced

transition region, since PE forms a larger proportion of their

rainfall and PE changes can more easily push them into a

different regime, via their affect on soil moisture storage.

Histograms of mean annual rainfall, PE, AE and runoff for

the three example catchments (Figure 2(b)) show that the

energy-water balanced catchment has the highest AE;

summer rainfall in this catchment is able to sustain a

higher AE rate than in the water-limited catchment. Similar

conclusions on the sensitivity of energy-water balanced

catchments to PE changes are reached by Wang & Alimo-

hammadi () from annual water balance analyses in 277

US catchments.

PE and environmental change

The situation becomes more complicated under climate

change, as amounts and seasonal distribution of rainfall,

as well as atmospheric demand for water (PE), are likely

to change. PE changes can occur through changes in the

meteorological controls, but also through changes in the

transpiration controls. The relationship between climate

change, meteorology and plant physiology is highly complex

(Wullschleger et al. ). For example, higher concen-

trations of CO2 in the atmosphere can lead to plant

stomata opening less widely, giving greater surface resist-

ance and less transpiration, but higher CO2 concentrations

can also enhance plant growth, leading to greater leaf area

and more stomata, possibly counter-acting the effect of sto-

matal closure (Betts et al. ). Lower light levels, due to

sunshine reductions or greater canopy shading, can also

lead to stomatal closure (Wullschleger et al. ). Climate

change impact studies generally consider only meteorologi-

cal controls on PE, with transpiration controls kept

constant. Gedney et al. () showed that increasing

trends in continental runoff through the twentieth century

were most consistent with the reduction in transpiration

due to CO2-induced stomatal closure, suggesting the
importance of this mechanism of PE change for hydrologi-

cal modelling under climate change.

A further complication is land-use change. Different

land-covers have different PE rates, so large-scale changes

in land-cover can influence AE, affecting runoff and river

flows. Some hydrological models, e.g., CLASSIC, allow for

different land-covers. Crooks&Davies () used CLASSIC

to investigate the sensitivity of flooding in the Thames to land-

use change, showing that covering the catchment with 100%

grass resulted in lower flood frequency than for 1990 land-

use, with 100% trees resulting in even lower frequency. Simi-

larly, Dunn & Mackay () investigated the sensitivity of

two sub-catchments of the River Tyne (north-east England)

to land-use change, using a distributed hydrological model.

Their results showed that the same land-use change had a

negligible effect on hydrology in the highland catchment,

but much more effect in the lowland catchment because its

evaporation is a greater proportion of total rainfall.

Ideally, climate and land-use change would be con-

sidered together, as there are possible two-way feedbacks

between them (e.g., Dirmeyer et al. ). At the local scale,

eco-hydrological indicators, such as those of Hill et al.

(), can be used to assess which species could appear/dis-

appear following environmental change at a site. Feedbacks

on evaporation, humidity, etc. could follow (e.g., Teuling

et al. () show how forests and grasslands differentially

affect overlying air-temperature during droughts).
HISTORICAL TRENDS

PE and AE trends in Britain

There are few published analyses of historical evaporation

trends in Britain, and most look at specific sites; none has

national coverage. The longest used daily temperature and

rainfall observations from Oxford for 1815–1996 (Burt &

Shahgedanova ). Thornthwaite monthly PE was first

estimated from temperature data, then seasonal regression

equations were applied to correct this towards Penman

PE. Monthly AE was then estimated, via SMDs. The results

suggest PE increases and AE decreases, but with consider-

able annual and decadal variation (no trend quantification

was provided). Crane & Hudson () used daily data



198 A. L. Kay et al. | Evaporation trends, future projections and hydrology in Britain Journal of Water and Climate Change | 04.3 | 2013
from a site in Wales to calculate Penman PE for 1969–1995.

They found no clear PE trend, although there were trends in

some components, and concluded that local factors (e.g.,

tree-felling) have had a greater impact on climate variables

and PE at this site than any larger-scale climatic changes.

Plots of trends in MORECS data include those of Rodda

& Marsh (), who show water-year total PE and AE for

1961–2009 averaged over England and Wales, and Price

& McKenna (), who show annual total PE for 1961–

1993 averaged over Scotland. Each shows apparent

increases, but with no quantification. Similarly, Yang et al.

() plot MORECS PE for 1961–1993, separately for

each month, for a single MORECS grid-box in Surrey;

increasing trends are apparent in most months (with no

quantification). Figure 3 shows MORECS PE and AE for

1961–2012 (for short grass and median AWC soils) averaged

over grid-boxes covering England and Wales, and Scotland,

again showing increasing trends in each case. Fitted linear

trend lines indicate very similar trends in PE and AE over

Scotland (∼0.6 mm/year), whereas over England and

Wales trends in AE are slightly higher (∼0.7 mm/year) and

those in PE are higher still (∼1.0 mm/year); all trends are

significant at the 1% level (p< 0.01), based on permutation

tests. An analysis of UK AE modelled by JULES also shows

a slow upward trend over 1971–2007 (Blyth pers. comm.).

Much more analysis is required, however, to investigate

spatial and seasonal variation and consistency between

modelling systems.

Unfortunately, neither PE nor AE is included in the UK

climate trend report of Jenkins et al. (), based on 5 ×
Figure 3 | MORECS PE (solid line, red) and AE (dashed line, green) for 1961–2012 (for short gra

each case a fitted linear trend line is shown (dotted). For references to colour see
5 km grids of numerous climate variables. Although there

are several methods for measuring AE, including eddy-

covariance, lysimeters and large aperture scintillometers

(e.g., Shuttleworth ), there are no long-term AE obser-

vations in Britain. Any apparent trends in relatively short

records should be treated with caution, as they may be due

to natural climatic variations rather than climate change

(Robson ); a problem potentially exacerbated by particu-

larly wet/dry periods towards the start/end of the record

(Hannaford & Buys ).
Global context

The shortage of information on evaporation trends is not

limited to Britain; the Intergovernmental Panel on Climate

Change concludes ‘there is little literature on observed

trends in evapotranspiration, whether actual or potential’

(Bates et al. ). There is evidence that pan evaporation

(a proxy for PE) has been decreasing in several regions of

the globe over the last five decades (Fu et al. ); known

as the ‘pan evaporation paradox’ since it has occurred

despite temperature increases (Shuttleworth et al. ).

The global review of McVicar et al. () suggests that

declining evaporation is primarily due to declining wind

speeds, implying the importance of including wind when

estimating PE.

A global study finds large basins with positive (e.g.,

Niger), negative (e.g., Amazon) and non-significant (e.g.,

Congo) PE trends over 1958–2001 (Weedon et al. ),

and both increases and decreases have been found in
ss and median AWC soils), averaged over England and Wales (left) and Scotland (right). In

the online version of the paper: http://www.iwaponline.com/jwc/toc.htm.

http://www.iwaponline.com/jwc/toc.htm
http://www.iwaponline.com/jwc/toc.htm
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China (Thomas ). Analysis of open-water PE for the

Canadian Prairies suggests that decreasing wind speeds are

the main factor decreasing PE in the south, while vapour

pressure deficits are the main factor increasing PE in the

north (Burn & Hesch ). Irmak et al. () show a sig-

nificant decrease in grass reference PE in the Platte basin,

USA, but with no significant change in wind speeds, and

suggest that increasing rainfall and related decreasing

short-wave radiation are instead responsible.

Jung et al. () examine data-driven estimates of global

land AE, which show a (highly significant) increase for

1982–1997 but a (less significant) decrease for 1998–2008.

Their correlation analyses suggest the recent decline is due

to increasing soil moisture limitation, but the time periods

studied are too short to imply trends; differences could be

due to decadal variability.
FUTURE PROJECTIONS

Issues with PE estimation under climate change

Projections of PE from vegetated surfaces are generally not

produced directly by Global or Regional Climate Models

(GCMs or RCMs), so have to be made offline. But which

PE formulae are likely to perform best when using climate

model data, as opposed to observed weather data? One con-

sideration is whether the climate model PE estimates will be

used directly, so the absolute values need to be reasonable,

or whether they are simply used to estimate PE changes

applied to baseline observed PE using the change factor

method (Kay & Jones ). Note that an alternative way

of estimating future PE is via statistical downscaling; fitting

a regression relationship between large-scale weather data

and catchment PE data, then applying it using GCM data

to estimate future catchment PE (e.g., Wilby & Harris

). Similarly, Chun et al. () develop a generalised

linear model (GLM) for PE. These methods are likely to

have many of the same issues as estimating PE using climate

model variables in more standard PE formulae.

The use of more complex formulae with climate model

data is not necessarily straightforward, since some variables

may be less reliable (Vorosmarty et al. ; Kingston et al.

), or simply not available from all climate models. For
example, the probabilistic UKCP09 projections (Murphy

et al. ) did not initially include wind speed, as wind

data were not available from all the GCMs used in the stat-

istical methodology (Sexton & Murphy ). Fisher et al.

() discuss issues with input data uncertainty and sensi-

tivity in PE formulae. A related issue is that climate model

data may have different inter-variable correlations than

observed data (Chun et al. ).

As simpler, empirical formulae rely on fixed relation-

ships between atmospheric variables and PE, these may

not hold under extrapolation to very different future cli-

mates (Shaw & Riha ), although some level of

extrapolation may be acceptable where formulae perform

well for a wide range of locations and climatic conditions

(Sperna Weiland et al. ). Irmak et al. () suggest

that, as many climate variables affecting PE have been chan-

ging and are expected to change in future, single-variable PE

formulae should be avoided when estimating PE (historical

or future) trends ‘due to the inherent nature of the trend

passed to PE from the variable’. A view echoed by Donohue

et al. () as ‘the greater the number of the four key vari-

ables … in a formulation, the more realistic the trends

from that formulation become’, although this clearly

depends on the sensitivity of a formula to each variable

and the relative strengths and directions of any trends in

those variables (likely to have some level of inter-depen-

dency; Fisher et al. ).

The sensitivity of PE formulae cannot necessarily be pre-

dicted directly from the meteorological variables included;

Bormann () compared PE changes given by 18 formulae,

for six locations in Germany, and found as much variability

for formulae of the same type as for different types. However,

Shaw & Riha () show that the temperature-only Hamon

and Thornthwaite formulae are much more temperature-sen-

sitive than the more complex Penman–Monteith and

Priestley–Taylor formulae. This should be interpreted care-

fully, since changes in other variables were neglected but

are likely to co-vary with temperature (Fisher et al. ;

Chun et al. ), and their inclusion could increase the

response of more complex formulae. Interestingly, Shaw &

Riha () show that the temperature-sensitivity of the

Oudin formula is mid-way between that of the other two

pairs of formulae. Oudin PE is temperature-based but also

includes extraterrestrial radiation (dependent only on Julian
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day and latitude), so has some dependence on radiation even

though its only true variable is temperature.

Shaw & Riha () also show that radiation, rather than

temperature, is the main driver of PE in broadleaf forests in

the USA. They suggest that the strong relationship between

radiation and temperature for longer averaging-periods

(weekly and above) allows temperature-only formulae to

work well in the current climate, but that this relationship

will alter under climate change, leading to temperature-

only formulae perhaps overestimating PE changes. They

thus recommend the Priestley–Taylor formula, if Penman–

Monteith is not used, but suggest that other formulae includ-

ing radiation could also work; even those that only include

extraterrestrial radiation (e.g., Oudin or Hargreaves), as long

as they are applied over longer averaging-periods. Har-

greaves PE (Hargreaves & Samani ) is an empirical

formula using temperature, extraterrestrial radiation and

diurnal temperature range (a humidity proxy).

Sperna Weiland et al. () compared Penman–Mon-

teith, Priestly–Taylor, Hargreaves and Blaney–Criddle

formulae for estimating global reference PE using daily rea-

nalysis data. Blaney–Criddle provided the best match to

monthly observation-based Penman–Monteith PE, but they

concluded that its need for cell-specific calibration, with

large spatial variation in calibrated coefficients, meant it

was unsuitable for climate change applications. They also

concluded that Penman–Monteith was not ideal, since it

did not outperform other methods, has a high data

demand and is sensitive to data accuracy. Their preferred

formula was a globally recalibrated version of Hargreaves

PE, which performs well across a range of climate zones

so is likely to do the same under climate change.

Kay & Davies () calculated Penman–Monteith and

Oudin PE over Britain, using monthly data from 13 climate

models for 1961–1990, and compared them with MORECS

PE. Perhaps surprisingly, Oudin PE matched better than

Penman–Monteith PE; the latter was lower than MORECS

for most months and most climate models, leading to clear

underestimation of mean annual PE. The authors postulated

that this was due to lower reliability of some of the extra vari-

ables required for Penman–Monteith. Ekstrom et al. ()

similarly found that Penman–Monteith PE derived from cli-

mate model variables for a baseline period was lower, in

every month, than PE derived from weather observations.
Sometimes, bias-correction is applied to allow for per-

ceived biases in climate model data (Piani et al. ).

However, it should be remembered that climate model

variables are expected to be internally consistent; applying

bias-correction separately to each variable, or only to some

variables, could introduce inconsistency (e.g., Fischer &

Knutti ) and potentially cause incorrect PE. A possible

alternative is direct bias-correction of PE. This was attempted

by Ekstrom et al. (), but the resulting PE time-series was

still considered unrealistic in terms of the range of daily

values. Furthermore, bias-correction assumes that any differ-

ences between observations and climate model estimates

are due solely to climate model bias, rather than multi-

decadal natural variability for example (e.g., Deser et al.

), and that the same bias applies for future periods.

PE projections for Britain

Table 1 summarises the PE changes for Britain presented in

several references, described in more detail below.

Arnell () uses data from 21 GCMs, for six catch-

ments in Britain, for a scenario representing a 2 WC rise in

global mean temperature. Annual PE (calculated using

Penman–Monteith but with fixed wind speeds) increases

for all but one climate model, with significant variation

between climate models and catchments (range �4–40%).

Annual PE changes are shown to be broadly related to

annual temperature changes, although changes to relative

humidity and (to a lesser extent) radiation also have an

effect.

Fowler et al. () use data from 13 RCMs, for the

2080s time-horizon with A2 emissions, with a weather gen-

erator for the River Eden (Cumbria). They show increases in

mean Penman–Monteith PE in all seasons, with the largest

percentage increases in autumn (30–80%) and winter

(30–60%) and smallest in spring (0–50%) and summer

(20–40%). Similarly, Kay & Davies () use data from

13 climate models (2080s A2) to calculate changes in

Penman–Monteith and Oudin PE for Britain. They show

that percentage changes in Oudin PE are positive through-

out the year, and larger in winter than summer, whereas

changes in Penman–Monteith PE can be negative for some

months and some climate models, and show greater

monthly variability. Increases in annual Oudin PE are

Pieterv
Highlight



Table 1 | Summary of PE projections for Britain

Reference Spatial coverage

Climate data; scenario
(e.g., time-horizon;
emissions) PE formula(e) Projected PE changes

Arnell () 6 British catchments 21 GCMs; 2 WC global
mean T rise

Penman–Monteith (wind
speed fixed)

Annual increase for all but 1
climate model

Fowler et al. () River Eden (Cumbria) 13 RCMs; 2080s; A2 Penman–Monteith Increase in all seasons

Kay & Davies
()

Great Britain: northern
and southern averages

5 GCMs, 8 RCMs;
2080s; A2

Oudin; Penman–Monteith Increase in all months; Increase
in most months, but decrease
in some months for some
climate models

Ekstrom et al. () Europe 1 RCM; 2080s; A2 Penman–Monteith Increase in all seasons

Cameron () River Lossie (Scotland) 1 RCM; 2080s; A1F1,
A2, B2, B1

Thornthwaite Increase in all months

Wilby & Harris
()

Thames (SE England) 4 GCMs; 2020s, 50s,
80s; A2, B2

Statistical downscaling Increase in winter and summer

Wilby et al. () Kennet (SE England) 3 GCMs; 2020s, 50s,
80s; A2, B2

Statistical downscaling Increase in winter and summer

Diaz-Nieto & Wilby
()

Thames (SE England) 1 GCM/RCM; 2020s,
50s, 80s; A2, B2

Statistical downscaling;
Penman–Monteith

Increase in all months except
Dec 2020s; Increase, often
greater than above

Chun et al. () 25 sites in Great Britain 1 GCM; 2080s; A2 GLM; Penman–Monteith Annual increase almost
everywhere; Annual increase
almost everywhere, greater
than above

Christierson et al.
()

UK (plus 2 example
catchments)

UKCP09; 2020s; A1B Oudin Increase in ensemble median all
months; for example
catchments, decrease in some
months for some ensemble
members

Kay & Jones () 9 British catchments UKCP09; 2080s; A1B Oudin As above

Prudhomme &
Williamson ()

Great Britain 1 RCM; 2050s; A1B Blaney–Criddle, Hamon,
Oudin, Thornthwaite,
McGuiness–Bordne,
Makkink, Jensen–Haise,
2 Priestley–Taylor, Turc,
2 Penman–Monteith

Increase in month representing
each of 4 seasons, everywhere,
for all formulae except
Priestley–Taylor

Kingston et al.
()

Globe, latitudinally-
averaged

5 GCMs; 2 WC global
mean T rise

Blaney–Criddle, Hamon,
Hargreaves, Jensen–
Haise, Priestley–Taylor,
Penman–Monteith

Annual increase in all cases
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∼12–34%, whereas those in Penman–Monteith PE are ∼6–
56%; increases are generally lower for Penman–Monteith

than Oudin in the north, but generally higher in the south.

Ekstrom et al. () use data from the HadRM3H RCM

over Europe (2080s A2) and show seasonal absolute differ-

ences between future and baseline Penman–Monteith PE.

Differences are largest in summer (4–8 mm/day over large
parts of Europe; less over Britain) and smallest in winter

(<0.5 mm/day for most of Europe). However, for hydrologi-

cal modelling of a catchment in north-west England they

used Blaney–Criddle instead of Penman–Monteith PE, as

the latter gave a spread of daily values too large compared

with observations, and percentage increases that were too

high (up to 80%) in summer (Blaney–Criddle gave a
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summer increase <20%). Based on this, Cameron ()

decided to apply Thornthwaite, rather than Penman–

Monteith, to estimate PE changes in the Lossie catchment

(Scotland), obtaining changes ranging from 6.2% (June) to

20.8% (January) for the 2080s with A2 emissions.

Wilby & Harris () use data from four GCMs (2080s

A2 and B2) with statistical downscaling for the Thames.

They obtain PE increases of 5–43% in winter and 11–22%

in summer, but for two GCMs, the summer changes are

larger than winter, with the opposite for the other two

GCMs. Wilby et al. () use a similar method for the

Kennet, using three of the same GCMs, but find much smal-

ler PE increases (winter 3–9%; summer 5–16%) presumably

due to a different regression model. Diaz-Nieto & Wilby

() showed that projected PE increases for the Thames

derived via statistical downscaling (using temperature and

specific and relative humidity) were roughly half those

derived using Penman–Monteith. Chun et al. () use

data from the HadCM3 GCM (1950–2099 A2) to estimate

PE at 25 sites across Britain using Penman–Monteith and

a GLM with four variables (radiation, temperature, wind

and humidity). They show annual percentage increases

almost everywhere by the 2080s, with greater increases in

the south/east than north/west, but smaller increases using

the GLM than Penman–Monteith. However, the site-specific

parameter calibration required by the GLM may make its

use under climate change questionable, as for Blaney–

Criddle (Sperna Weiland et al. ).

Christierson et al. () use UKCP09 probabilistic temp-

erature data (2020s A1B) to calculate Oudin PE percentage

changes for each river-basin region in the UK. They present

maps of the central estimate of PE changes, which show an

increase across the country, with the largest changes in

winter. The range of monthly PE changes, for two example

catchments, almost always show increases, usually 0–30%,

with a greater variation in winter than summer (but only a

20-member subset of the full 10,000 UKCP09 set is shown,

selected via latin-hypercube sampling). These PE changes

are shown to be generally consistent with an older set of

scenarios, and with those calculated using temperature

data from the 11-member UKCP09 RCM ensemble in the

Oudin formula. Similarly, Kay & Jones () use UKCP09

probabilistic temperature data (2080s A1B) to calculate

Oudin PE changes for nine catchments in Britain. Again,
the PE changes are almost always positive, and generally

larger (with greater variation) in winter than summer, but

the range of 5–60% is larger than that of Christierson et al.

(), because of the later time-horizon. Prudhomme &Wil-

liamson () use data from one member of UKCP09 RCM

ensemble (2050s A1B) and compare PE changes across Brit-

ain for 12 formulae for a month representative of each of the

four seasons. PE almost always shows an increase, although

the magnitude varies by season, location and formula.

Kingston et al. () use data from five GCMs, for a

scenario representing a 2 WC rise in global mean tempera-

ture, and compare latitudinally averaged annual PE

changes (for 60WS to 60WN) for six formulae. PE increases

were found for all latitudes, GCMs and formulae, and

broadly followed corresponding temperature changes. How-

ever, significant differences were found between formulae;

Hamon and Jensen–Haise (Jenson & Haise ) gave the

largest PE changes at most latitudes, then Hargreaves,

Penman–Monteith and Priestly–Taylor, although the differ-

ences are less at Britain’s latitude than at lower latitudes.

Blaney–Criddle gave PE changes that varied much less

with latitude than other formulae.

PE projections with changes in transpiration controls

Bell et al. () developed a method to estimate Penman–

Monteith PE using surface resistance (rc) values produced

by an RCM with an embedded land-surface scheme, so

allowing rc to vary with the level of CO2 in the atmosphere.

Comparisons over Britain, using data from the HadRM3

RCM for 1961–1990, showed that using RCM rc gave PE

comparable with MORECS, but generally lower than

when using MORECS’ 12 fixed monthly rc values, particu-

larly in spring. Similarly, for 2070–2099, using RCM rc
gave lower PE than when using fixed rc. Looking at percen-

tage PE changes between the two periods, using fixed rc gave

increases of 15–34%, whereas using RCM rc gave signifi-

cantly lower increases (3–7%). Thus rc changes could be

an important mechanism for limiting PE change. However,

not all possible feedbacks are included in this RCM run (e.g.,

changes to leaf area or land cover); PE changes may be

somewhere in between if other mechanisms are included.

Kay & Jones () used the method above with data

from the UKCP09 11-member RCM ensemble (with
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corresponding rc time-series) and showed that the corre-

sponding percentage PE changes were more variable than

those derived using UKCP09 probabilistic temperature

data to calculate Oudin PE changes. The biggest difference

occurred in winter and in spring, where varying rc PE

changes were often lower than Oudin PE changes. How-

ever, even large percentage PE changes are not really

significant in winter in Britain, since baseline PE is very

small. Differences in spring could be more important.

Moratiel et al. () investigate possible changes in grass

reference PE in part of Spain, including the effect of rc
changes due to CO2 concentrations rising from 372 to

550 ppm by 2050. They do this by quantifying trends in

observed weather variables for 1980–2009, extending these

over the next 50 years, and using them to calculate

Penman–Monteith PE both with current rc (70 s/m) and

an approximate future rc assuming stomatal closure (87 s/

m). They find PE increases of about 10% with current rc
but only about 5% with future rc. This is similar to Bell

et al. (), although there the differences are larger, per-

haps because of the later time-horizon. Islam et al. ()

also find much smaller PE increases (or decreases) for the

US Great Plains when the effect of elevated CO2 on stoma-

tal resistance is included.

Effect of PE uncertainty on hydrological projections

From a hydrological perspective, differences in PE projec-

tions are only crucial if they are likely to result in different

hydrological projections. The apparently frequent insensitiv-

ity of hydrological modelling to PE accuracy suggests that

accurate PE projections will not always be important.

Sperna Weiland et al. (), using reanalysis data for

1979–2002, show a general reduction in variability of results

between six different PE formulae when moving down their

global hydrological modelling chain, from PE to AE to

runoff to river flows. They thus suggest ‘the selection of a

PET method may be of minor influence on the resulting

river flow modelled with a hydrological model’, except for

relatively limited regions where the variability remains

high (not Britain).

Kay & Davies () look at the extra uncertainty intro-

duced into hydrological impacts for three catchments in

Britain, using PE changes derived from Penman–Monteith
and Oudin formulae with data from 13 climate models.

The results suggest that the extra uncertainty is greatest for

changes in low to median flows, although possibly still

important for high flows in some catchments, but that cli-

mate model uncertainty dominates. Arnell () tested the

effect of using Priestly–Taylor in place of Penman–Monteith

PE, when modelling changes in European runoff under four

scenarios for the 2050s. As Priestly–Taylor PE increases

were generally smaller than those for Penman–Monteith,

the pattern of runoff changes followed that of rainfall

changes more closely. However, PE uncertainty was gener-

ally less than scenario uncertainty.

Kingston et al. () assessed the effect of six PE for-

mulae on the global extent of arid (rainfall/PE< 1) and

humid (rainfall/PE� 1) regions, with five GCMs for a 2 WC

rise in global mean temperature. They showed that, although

almost all GCMs and PE formulae agreed on an increased

arid area (and corresponding decreased humid area), they

disagreed on the amount of change; eastern England

verges on aridity (Figure 1) so this uncertainty could apply.

Furthermore, regional analysis of water surpluses (annual

rainfall minus PE, for months where rainfall> PE) suggests

that PE uncertainty is of comparable magnitude to GCM

uncertainty, but the analysis only covers the Mediterranean,

East Africa and Southeast Asia (not Britain). Sheffield et al.

() showed that the global drought severity trend is exag-

gerated when modelled using Thornthwaite PE rather than

Penman–Monteith PE, while Milly & Dunne () showed

that using Jensen–Haise PE for 10 catchments in the USA

gave smaller runoff changes than suggested by the driving

climate models directly.

Betts et al. () modelled change in continental runoff

under a doubling of CO2, and showed that including the

effect of stomatal closure led to larger runoff increases

(17± 5%) than including only radiative forcing (11± 6%).

The difference was slightly less when changes in land

cover and leaf area were also included. Similar effects

were seen for percentage changes in flood peaks in the

Thames, using data from the UKCP09 11-member RCM per-

turbed-physics ensemble to drive the G2G hydrological

model (Bell et al. ); changes were higher when averaged

over the six members which included stomatal closure, and

lower when averaged over the five members which did not.

However, simultaneous variation of other parameters in the
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perturbed-physics ensemble means that this should be inter-

preted with caution.
DISCUSSION AND CONCLUSIONS

The aim of this paper was to present a review of historical

trends and future projections for evaporation in Britain,

from a hydrological perspective. Evaporation is generally esti-

mated from meteorological data, using formulae of varying

complexity. The UKMet Office’s MORECS and MOSES sys-

tems apply the physically based Penman–Monteith formula

to estimate PE from meteorological observations over Brit-

ain. These PE are often used, with rainfall, as inputs for

hydrological modelling. While hydrological models may

appear to be relatively insensitive to the absolute accuracy

of PE data, inaccurate data can cause difficulties with cali-

bration, such as failure to close the annual water balance or

parameter instability. Although PE is less variable than rain-

fall, with a well defined seasonal pattern, AE accounts for

loss of a significant proportion of rainfall across much of

south/east Britain. These factors are important consider-

ations when hydrological models are applied, especially

when simulating impacts of environmental change.

There is relatively little information on historical evapor-

ation trends in Britain, or indeed globally, whether actual or

potential. The few British studies generally indicate PE

increases, and some also show AE increases. Globally, both

increases and decreases in PE have been detected in different

areas, with different causes, although decreasing wind speeds

tend to be implicated in PE decreases. A more recent global

decline in data-driven AE estimates has been attributed to

decreasing soil moisture. Direct AE measurement is progres-

sing from localised observations to remotely sensed estimates

from large areas. Combined analyses of measurements, satel-

lite data, observed changes in meteorological variables

affecting evaporation, and observed changes in river flows

should, together with further modelling, enable a better

understanding of the direction, magnitude and causes of

AE or PE change (e.g., Donohue et al. ).

There is little consensus on the best approach for deriving

future PE projections; some authors believe that formulae

including all meteorological variables influencing PE must

be applied, while others believe that sensitivity of such
formulae to data quality makes this inadvisable, or that the

choice will make little difference in subsequent hydrological

modelling. The dilemma is summarised by Kingston et al.

(), who considers ‘whether more reliable estimation of

changes in PET can be obtained from physically based

methods (e.g. Penman–Monteith) with uncertain data qual-

ity, or more empirical methods (e.g. Hargreaves) with more

reliable input data’. Vorosmarty et al. () argue that

‘Although these [physically based PE] methods are attractive

on theoretical grounds, the degree to which the necessary

input data sets can be successfully assembled … remains an

open question. Use of more physically realistic evaporation

functions must be weighed against potential inaccuracies

in, and inconsistencies among, the several climatic forcing

fields used by these methods’. The choice is further

complicated when considering possible changes in plant be-

haviour under higher CO2 concentrations (stomatal closure,

increased plant growth, etc.).

Most studies presenting PE projections for Britain indi-

cate increases in annual PE, although some studies suggest

(usually small) PE decreases in some months (Table 1).

However, there is considerable variation in the magnitude

of projections, caused not just by the PE formula applied

but by the climate model, emissions scenario and time-hor-

izon, and by location. These factors make it difficult to

compare PE projections between studies, as do the varied

ways of describing changes (i.e., percentage or absolute;

monthly, seasonal or annual).

It has been suggested that the choice of PE formula

could be particularly important in regions where precipi-

tation and PE are in close balance (e.g., Kingston et al.

). The maps in Figure 1, based on MORECS data,

show that this is likely to include parts of Britain, although

changes in rainfall as well as PE make it difficult to predict

precisely which areas are likely to be most affected. Bor-

mann () suggests calculating the change in annual

climatic water budget (annual precipitation minus annual

PE) between baseline and future climates, to test the sensi-

tivity of a given location to choice of PE formula; the

choice is probably not crucial if changes are relatively con-

sistent between formulae, but needs greater consideration

if there is more variation. However, likely changes in the

seasonality of rainfall under climate change (Murphy et al.

) mean that such annual water balance tests may
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mask important seasonal changes. Plots of monthly mean

rainfall and PE under climate change may be more informa-

tive. In some circumstances, it may be necessary to extend

the sensitivity study to the hydrological modelling, as the

importance of PE is likely to vary according to the hydrolo-

gical aspect under investigation as well as catchment

location (e.g., Kay & Davies ). Nevertheless, several

studies have shown that uncertainty due to climate model

structure is greater than that due to PE formulation, imply-

ing that, where there is limited capacity for hydrological

model runs, the priority should be to cover climate model

uncertainty more comprehensively.

The question remains: which PE formulae are likely to be

more (or less) reliablewhen appliedwith climatemodel data?

For each region of the globe, the answer requires investigation

of: (1) which meteorological variables are most important for

PE changes (i.e., the necessary level of complexity), and (2)

the reliability of each of these meteorological variables

when taken from different climate models. Together, these

could enable the derivation of improved PE projections, and

so improved hydrological projections. Further investigation

is also needed into feedbacks between climate change and

plant transpiration and growth. Clarification of the best

ways to measure/model evaporation would also be useful

for detection and attribution, as evaporation trends are

easier to detect and attribute than precipitation or runoff

trends (Ziegler et al. ; Douville et al. ).
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