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ABSTRACT

Satellite and gridded meteorological data can be used to estimate evaporation (E) from land surfaces using

simple diagnostic models. Two satellite datasets indicate a positive trend (first time derivative) in global

available energy from 1983 to 2006, suggesting that positive trends in evaporation may occur in ‘‘wet’’ regions

where energy supply limits evaporation. However, decadal trends in evaporation estimated from water

balances of 110 wet catchments (E
wb

) do not match trends in evaporation estimated using three alternative

methods: 1) E
MTE

, a model-tree ensemble approach that uses statistical relationships between E measured

across the global network of flux stations, meteorological drivers, and remotely sensed fraction of absorbed

photosynthetically active radiation; 2) EFu, a Budyko-style hydrometeorological model; and 3) EPML, the

Penman–Monteith energy-balance equation coupled with a simple biophysical model for surface conductance.

Key model inputs for the estimation of EFu and EPML are remotely sensed radiation and gridded meteoro-

logical fields and it is concluded that these data are, as yet, not sufficiently accurate to explain trends in E for

wet regions. This provides a significant challenge for satellite-based energy-balance methods. Trends in Ewb

for 87 ‘‘dry’’ catchments are strongly correlated to trends in precipitation (R2 5 0.85). These trends were best

captured by EFu, which explicitly includes precipitation and available energy as model inputs.

1. Introduction

The quantity of water available for runoff (Q) and

changing the amount of moisture stored in catchments is

the difference between precipitation (P) and evapora-

tion (E). Runoff from river basins is substantial in humid

regions where P exceeds E, but there is little or no runoff

in arid regions where E ’ P. Between these extremes,

runoff is often the small residual between P and E and

subtle changes in either can strongly affect water yields.

Global warming associated with rising atmospheric CO2

concentrations is expected to substantially modify the

global hydrological cycle (Huntington 2006; Milly et al.

2005) and thus change the balance between P, E, and Q

by differing amounts in various regions across the globe.

Evaporation from land surfaces is fundamentally deter-

mined by the availability of water and energy, and un-

derstanding the contributions of trends and changing

patterns in water and energy supply to changing evap-

oration is an important issue for earth system science.

Suggested reasons for variations in E and Q include

changes in precipitation (Zhang et al. 2007), the impact of

global brightening/dimming on available energy (Roderick

and Farquhar 2002; Wild et al. 2008, 2005), the coupled

changes in photosynthesis and surface conductance due

to enhanced greenhouse gas concentrations (Gedney et al.

2006), decreases in soil moisture content (Jung et al. 2010),

and changes in land use or land cover (Piao et al. 2007). To

identify possible causes for changes in E, Jung et al. (2010)

used the model-tree ensemble (MTE) algorithm of Jung
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et al. (2009) to calculate monthly evaporation rates (EMTE)

for the global land surface from 1982 to 2008. The MTE

is a machine-learning algorithm trained using evaporation

measurements from the global Flux Network (FLUXNET)

database, gridded global meteorological data, and remotely

sensed fraction of absorbed photosynthetically active

radiation. According to this algorithm, global average

EMTE increased by 0.71 6 0.1 mm yr22 from 1982 to

1997, but with a slight decreasing trend in EMTE in the

following decade. An ensemble of outputs from nine

independent models gave similar results, and Jung et al.

(2010) attributed the reduction in EMTE in the past de-

cade to declining soil water availability (i.e., precipita-

tion), particularly across Africa and Australia where

microwave remote sensing–based soil moisture data

showed negative trends. This paper complements the work

of Jung et al. (2010) by comparing four different ap-

proaches to estimating global and regional trends in

evaporation from 1983 to 2006: 1) using the water bal-

ances of large, unregulated catchments (Ewb); 2) through

the model-tree ensemble approach of Jung et al. (2010)

(EMTE); 3) application of a classical ‘‘Budyko’’ hydro-

meteorological model (EFu) (Fu 1981); and 4) through an

energy-balance model that utilizes gridded meteorologi-

cal data and remotely sensed radiation and leaf area index

data (E
PML

) (Leuning et al. 2008). The energy-balance

approach is particularly useful for assessing whether trends

in E can be explained by key biological and meteorological

variables other than precipitation.

Section 2 provides a brief summary of methods used

for the evaporation calculations, while section 3 docu-

ments the data sources used in the analysis. Results are

presented in section 4, followed by the discussion in

section 5 and conclusions in section 6.

2. Modeling and estimation approaches

We first clarify our notation before introducing the

estimation approaches used. Variables EMTE, EPML, P,

and Q represent monthly or annual values, while EMTE,

E
PML

, P, E
wb

, E
Fu

, and Q indicate 5- or 23-yr (1983–

2006) averages. Trends in all of the variables are for 5-yr

running averages or 3-yr block averages.

a. Catchment water balances

Annual evaporation rates were calculated from the

water balances of unregulated catchments using

Ewb 5 P 2 Q. (1)

Over the long term, the change in water storage is assumed

to be negligible in unregulated catchments, allowing this

term to be neglected when estimating Ewb (Zhang et al.

2001). Use of Eq. (1) also assumes precipitation is the

only source of water in the catchment and evaporation

the only loss; that is, no water is gained or lost via inter-

basin transfers (a leaky catchment; Le Moine et al. 2007)

or via deep groundwater.

b. ‘‘Budyko-curve’’ hydrometeorological model

In this paper we use the form of the Budyko model

given by Fu (1981):

EFu

P
5 1 1

Ep

P
2

"
1 1

Ep

P

 !
v
#1/v

, (2)

in which v is a parameter and EP is the mean annual

potential evaporation calculated by summing daily po-

tential evaporation:

Ep 5 aPT �
365

1
[«(Ai/l)/(« 1 1)], (3)

and where aPT 5 1.26 (Priestley and Taylor 1972). Here

Ai is the available energy for each 24-h day, l is the la-

tent heat of evaporation, and « 5 s/g, in which g is the

psychrometric constant and s 5 de*/dT—the slope of the

curve relating saturation water vapor pressure to tem-

perature. A single value, v 5 2.48, was used in Eq. (2)

for all catchments globally. Its value was calibrated using

water balances of gauged, unregulated catchments, av-

eraged over the period 1983–2006 (Zhang et al. 2010).

c. Penman–Monteith combination equation

To separate explicitly the contributions of vegetation

and soil to total evaporation, Leuning et al. (2008)

modified the classic Penman–Monteith (PM) combina-

tion equation (Monteith 1964) according to

lEPML 5
f «As

« 1 1
1

«Ac 1 (rcp/g)DaGa

« 1 1 1 Ga/Gc

, (4)

where As 5 tAi and Ac 5 (1 2 t)Ai are the flux density of

available energy absorbed each day by the soil and canopy,

respectively; t 5 exp(2kALai); Lai is leaf area index; kA is

the extinction coefficient for net radiation; r the density of

air; and cp the specific heat of air at constant pressure.

Term 1 on the right is used to estimate evaporation

from the soil by multiplying the equilibrium evaporation

rate at the soil surface, «As/(1 1 «), by a coefficient f that

varies from f 5 1 when the soil surface is wet to f 5 0 when

it is dry. In this paper we follow Zhang et al. (2010) in

calculating the temporal variation of f as a function of

precipitation and equilibrium evaporation rates for one

month before and after the current 1-month time step.
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Term 2 describes evaporation from the plant canopy.

It is a function of Ac; Da, the water vapor pressure deficit

of the air at a reference height above the canopy; and

Ga, the aerodynamic conductance. In addition to these

meteorological variables, calculation of canopy evapo-

ration requires knowledge of the canopy conductance

Gc. This biophysical variable was estimated using the

following simple model (Isaac et al. 2004; Leuning et al.

2008):

Gc 5
gsx

kQ

ln

"
Qh 1 Q50

Qh exp(2kQLai) 1 Q50

#
1

1 1 Da/D50

� �
,

(5)

where gsx is the apparent maximum stomatal conduc-

tance of leaves at the top of the canopy, kQ is the ex-

tinction coefficient for visible radiation, and Qh is the

average flux density of visible radiation at the top of the

canopy. The parameters Q50 and D50 are the values of

Qh and Da, respectively, at which stomatal conductance

is half its maximum value. The canopy conductance Gc

varies with Qh and Da on all time scales and with Lai at

seasonal time scales. Equation (5) contains no explicit

dependence of Gc on soil moisture because we wish to

apply Eqs. (4) and (5) using remotely sensed and gridded

meteorological data only. While this is a deficiency in

the model, Gc does depend indirectly on long-term var-

iation in soil water availability through the landscape-scale

adjustment of Da and Lai—the so-called ‘‘ecological

equilibrium’’ concept.

Four of the five parameters in Eqs. (4) and (5) [called

the Penman-Monteith-Leuning (PML) model] were as-

signed constant values (kQ 5 kA 5 0.6, Q50 5 30 W m22,

and D50 5 0.7 kPa; Leuning et al. 2008). Following Zhang

et al. (2010), the magnitude of the fifth parameter gsx was

estimated separately for each 0.58 land surface pixel used

in our analysis by adjusting gsx to force agreement be-

tween the 23-yr averages of EPML and EFu for that pixel.

Note, this does not force the trends (first time derivative)

in EPML and EFu to be the same over the averaging pe-

riod. An advantage of EPML is that it can be evaluated at

fine temporal resolution and it allows us to examine the

relative importance of key variables other than A that

control evaporation, namely Da, Ga, Lai, and f. The ad-

vantage of E
Fu

is that it explicitly includes precipitation as

an input variable, whereas EPML only uses P in calculating

the soil wetness variable f.

We used the above equations to estimate EFu and gsx

and, thence, monthly EPML of land surfaces at a 0.58

resolution globally for the period 1983–2006. The results

were used to assess whether trends in E
wb

calculated

TABLE 1. Comparison of mean annual evaporation rates E for the global land surface, wet pixels (where the aridity index AI # 1.5), and

dry pixels (where AI . 1.5) for the period 1983–2006. Volume of water evaporated annually is also shown. Here E
MTE

is missing in Sahara

and Greenland where EPML values are not included for global aggregation.

Mean evaporation rate mm yr21 Volume evaporated 103 km3 yr21

Area EMTE EPML VMTE VPML Trenberth et al. (2007) Oki and Kanae (2006)

Global 521.5 563.2 61.3 66.2 73 65.5

Wet 645.2 729.6 26.6 30.0

Dry 454.9 473.6 34.8 36.2

FIG. 1. Spatial pattern of wet pixels (aridity index; AI # 1.5) and dry pixels (AI . 1.5) across

global land surface. Boundaries for the 197 unregulated catchments are shown in black.
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from catchment water balances are consistent with 1)

trends in EFu due to variation in A and P; 2) with trends

in EPML resulting from those in A, Da, Ga, Lai, and f; or

3) with trends in EMTE derived by Jung et al. (2010).

3. Data and methods

To calculate monthly EPML we used monthly meteo-

rological fields of daytime average air temperature and

humidity to calculate Da and Ga, while Ac, As, and Qh

were calculated using average incoming solar radiation,

combined with remotely sensed estimates of Lai and sur-

face albedo.

Global data fields of vapor pressure and temperature

[time series (TS) 3.0] at 0.58 resolution came from the

Climate Research Unit (New et al. 2000). Leaf area in-

dex and land cover type data at ;8-km resolution were

obtained from Boston University (Ganguly et al. 2008a,b).

Two precipitation datasets were examined—one from

the Global Precipitation Climatology Project (GPCP,

version 2; Adler et al. 2003) at 2.58 resolution, the other

from the Global Precipitation Climatology Centre (GPCC,

version 4; Rudolf and Schneider 2004) at 0.58 resolution.

There was little difference between the two datasets at

a common resolution of 2.58 (not shown), so the 0.58

GPCC dataset was used in the subsequent analyses.

Three global radiation products were used to calcu-

late E
Fu

and EPML: 1) net short- and longwave radia-

tion from the International Satellite Cloud Climatology

Project (ISCCP) dataset (2.58 resolution; Zhang et al.

2004), 2) the Global Energy and Water Cycle Experi-

ment Surface Radiation Budget products (SRB) at a

1.08 resolution (Gupta et al. 2006), and 3) the National

Centers for Environmental Prediction (NCEP) and the

National Center for Atmospheric Research (NCAR)

reanalysis data (referred to as NCEP data) (Kalnay

et al. 1996). All datasets were resampled to 0.58 spatial

resolution. There are considerable differences in the

annual global means and trends in available energy

derived from the three datasets and we examine later

FIG. 2. Time series of annual evaporation EPML and EMTE for (top) the global land surface,

(middle) wet catchments, and (bottom) dry catchments.

FIG. 3. Spatial patterns in (a) EMTE and (b) EPML averaged over 1983–2006 across global land surface.
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the consequences of these differences for EFu and EPML

(in Fig. 7 and Table 3).

Catchment water balances were calculated for 197

unregulated catchments over the hydrological year, de-

fined as October–September to minimize effects of snow-

fall on yearly water balances (Dai et al. 2009). Selected

catchments have an area .500 km2 and missing daily

streamflow data are less than 5% of the total. Stream-

flow data were from several sources: 1) 55 monthly series

from the 925 gauges of Dai et al. (2009), 2) 53 daily series

from the Global Runoff Data Centre streamflow database

(http://www.bafg.de/GRDC/EN/Home/homepage__node.

html), and 3) 88 daily series from Australia. Catchment

boundaries were respectively delineated by 1) the Simu-

lated Topological Network (STP-30p; Vorosmarty et al.

2000), 2) the HYDRO1k digital elevation model (DEM;

Peel et al. 2010), and 3) the Australian GEODATA 9-s

digital elevation model (Hutchinson 2002). Regulated

catchments were identified from the 1) International

Commission of Large Dams (Vorosmarty et al. 2003),

2) Meridian World Data (http://www.meridianworlddata.

com/), and 3) National Land and Water Resources Audit

of Australia (http://www.nlwra.gov.au/). It is noted that

even in unregulated catchments, there may be changes

in streamflow because the land is experiencing change

draws of water for irrigation, flood control engineering,

land use change, wetlands loss, etc. Such changes do not

affect our analysis provided precipitation, evaporation,

and runoff occur within the same catchment.

Trends in E
wb

, E
Fu

, EMTE (or E
MTE

), EPML (or E
PML

),

and their inputs were calculated using the Mann–Kendall

tau-b nonparametric technique including Sen’s slope

method (Sen 1968). This trend test is widely used in

hydrology (Burn and Hag Elnur 2002). To minimize the

effect of changes in interannual water storage on Ewb,

the trend test was applied to 5-yr moving averages for

P and Q (Teuling et al. 2009). We recognize that a

moving average increases the serial correlation (auto-

correlation) of a data series. A prewhitening procedure,

developed by Yue et al. (2002), was applied to each

moving average series to eliminate the effect of serial

correlation prior to applying the Mann–Kendall trend

test in order to satisfy the test assumption of data in-

dependence. In addition, the data were also analyzed

using 3-yr block averages (there are eight points for

23-yr time series) to check the consistency of the con-

clusions from the trends obtained using the 5-yr moving

averages.

4. Results

Before examining trends in evaporation rates pre-

dicted by the methods described above, we first compare

mean annual evaporation for 1983–2006 for the global

land surface for ‘‘wet’’ pixels, where the aridity in-

dex AI 5 Ep/P # 1:5, and ‘‘dry’’ pixels, where AI . 1.5

(Table 1 and Fig. 1). Average global land surface evap-

oration estimated using the MTE approach of Jung et al.

(2010) is E
MTE

5 521.5 mm yr21, while Mueller et al.

(2011) reported a value of 45.3 6 5.7 W m22 (572.4 6

68.4 mm yr21) from an analysis of 40 global evapo-

ration datasets. Using the ISCCP radiation data, we

estimated EPML 5 563.2 mm yr21, which is a differ-

ence of 64% relative to the mean of the two, and

E
MTE

and E
PML

differ by 66% for wet pixels and only

62% for dry pixels. The two approaches give similar

values for the annual average volume of water evapo-

rated globally, and both are in excellent agreement with

estimates given by Oki and Kanae (2006). The average of

these three estimates is 11% less than that of Trenberth

et al. (2007).

Time series of anomalies in annual EMTE and EPML

relative to their respective means are shown in Fig. 2 for

the global land surface and for wet and dry pixels. We

see that interannual variation in EPML is greater than for

EMTE in all three panels and that the variation in EPML is

greatest for wet pixels. There is a statistically significant

increasing trend in the evaporation anomalies for all

three classes ( p , 0.01), but the slope of 1.088 mm yr21 in

the global trend for annual EPML is almost double that of

0.528 mm yr21 for EMTE. Trends predicted using annual

EPML are also double those from EMTE for wet and dry

catchments.

Patterns of 23-yr average evaporation rates EMTE

across the global land surface are very similar to those

for EPML (Fig. 3), with both models giving high rates in

tropical and wet regions such as in the Amazon and

Congo basins and low evaporation rates in arid and high-

latitude regions, such as in central Australia and Siberia.

We note that E
MTE

is not available for the Sahara Desert

and Greenland. There is a high degree of spatial corre-

lation between EMTE and EPML: r 5 0.90 for wet pixels

and r 5 0.81 for dry pixels. Note that the average patterns

TABLE 2. Correlation coefficient matrix between trends (1983–

2006) in E
MTE

, E
Fu

, and E
PML

for wet pixels where the aridity index

AI # 1.5 and for dry pixels where AI . 1.5.

Pixels Variables

Variables

EMTE EPML EFu

Wet EMTE 1.00 0.20 20.02

E
PML

1.00 0.32

E
Fu

1.00

Dry EMTE 1.00 0.53 0.49

EPML 1.00 0.62

E
Fu

1.00
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of E
Fu

and E
PML

are identical for reasons explained in

section 2c.

While there is good agreement between the global

patterns in EMTE and EPML averaged over the 23-yr study

period, this is not the case for the trends in evaporation

from wet catchments as calculated using the two ap-

proaches (Table 2). There is essentially no correlation

between trends in E
MTE

and those in E
Fu

and a correla-

tion coefficient of only 0.32 for EPML versus EFu (Table 2).

A better relationship amongst the three is found for dry

FIG. 4. Global map of trends in (a) EMTE, (b) EFu, (c) EPML, and (d) Ewb from 1983 to 2006. (e)–(h) The corresponding two-sided p values

for each grid cell obtained from the prewhitened Mann–Kendall trend test. Grid cells in all panels are left blank when p . 0.1. Boundaries

for the 197 unregulated catchments are shown in black.
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catchments, where the correlation coefficient is ;0.5 for

E
MTE

versus E
Fu

or E
PML

, and ;0.6 for E
Fu

versus E
PML

.

Figures 4a–d show global maps of average trends in

EMTE, EFu, and EPML for each 0.58 land surface pixel and

Figs. 4e–h show maps of the corresponding probability

( p) values for statistical significance. Estimated trends in

EMTE are a positive 2–6 mm yr21 across equatorial Africa,

India, and northwest Australia with p , 0.05, but they are

quite small across the rest of the globe. In contrast, E
Fu

and E
PML

show increasing and decreasing trends across

different regions. Both suggest significant ( p 5 0.05) de-

creasing trends in the southwestern United States, the

Himalayas, and parts of Africa and South America, with

increasing trends for equatorial Africa, northwest Aus-

tralia, and the northeastern United States. It is very dif-

ficult to validate these trend estimates using E
wb

because

of the small number of unregulated catchments that still

remain across the globe. Trends indicated by E
Fu

and

EPML in northern Australia, northwestern Canada, and

eastern Siberia are similar to trends in Ewb for those re-

gions, but catchment water balances indicate negative

trends in Ewb for subequatorial Africa and northeastern

Brazil, opposite to those in EFu and EPML. The trend in

E
wb

is not significant ( p . 0.1) in the Amazon basin,

whereas E
Fu

shows a mixture of positive and negative

trends and E
PML

suggests positive trends (Fig. 4).

Global maps of trends in the key drivers of evaporation—

precipitation P, available energy A, humidity deficit D,

and leaf area index Lai—are shown in Fig. 5. Most striking

is the strong positive trend in remotely sensed available

energy (ISCCP forcing) in the central United States and

in much of the Southern Hemisphere, especially in Brazil

and central Africa. These are generally accompanied by

strong negative trends in P, small decreasing trends in D,

and increasing Lai, whereas the positive trend in A for

the northwest of Australia is associated with an increase

in P and a decrease in D. Sensitivity analyses showed that

trends in D and Lai observed in Fig. 5 do not explain the

trends in EPML seen in Fig. 4 (data not shown). Instead,

precipitation mainly controls evaporation in dry catch-

ments (AI . 1:5), whereas evaporation from wet catch-

ments (AI # 1.5) is largely determined by available

energy. This is consistent with (Fisher et al. 2009), who

found that A accounts for 87% of the variance in E

measured at 31 flux stations in Amazonia.

Values of E
Fu

and EPML (or E
PML

) presented thus far

were calculated using ISCCP radiation data, but the SRB

and NCEP global radiation datasets were also available

for analysis (section 3). We note that radiation data are

not used to calculate EMTE, which is estimated using

evaporation measurements from the global FLUXNET

database, gridded global meteorological data, and re-

motely sensed fraction of absorbed photosynthetically

active radiation (Jung et al. 2010). In Fig. 6 we com-

pare maps of trends in available energy constructed

using the three datasets and in Fig. 7 we examine the

FIG. 5. Global map of trends (1983–2006) in (a) precipitation, P; (b) available energy, A; (c) vapor pressure deficit, D; and (d) leaf area

index, Lai. Boundaries for the 197 unregulated catchments are shown in black.
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effects of alternative estimates of available energy on

the calculated trends in annual EPML (note that EFu is

only available at a mean annual scale). Figure 6 shows

that there are clear differences in the magnitudes, sign,

and patterns between the three datasets, with ISCCP

and SRB showing positive trends in A over South

America and Africa that are not apparent in the NCEP

dataset. The SRB dataset shows strong negative trends

in A over Asia but such trends are not seen in the other

two radiation products. These differences can be seen

more quantitatively when the radiation data are ap-

plied to the 110 wet catchments used in this study. Sub-

stantial differences in mean trends in annual available

energy are calculated using the ISCCP, SRB, and NCEP

FIG. 6. Trends (1983–2006) in available energy from (a) the ISCCP radiation products

(Zhang et al. 2004), (b) the SRB (Gupta et al. 2006), and (c) the NCEP–NCAR reanalysis data

(Kalnay et al. 1996). Boundaries for the 197 unregulated catchments are shown in black.
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data: 8.95, 4.74, and 23.11 MJ m22 yr22, respectively

(Fig. 7a). When these radiation datasets are used with

the PML model, the corresponding mean trends in

annual EPML are 1.65, 1.52, and 0.28 mm yr21 (Fig. 7b).

Note that the offset in A between the ISCCP and SRB

datasets does not appear in the trends in EPML be-

cause annual EPML is constrained by the Fu (1981)

hydrometeorological model using each radiation da-

taset independently (section 2). The negative trend in

A seen in the NCEP dataset is not apparent in the trend in

EPML because of compensating trends in the other vari-

ables affecting EPML.

The results presented in Figs. 1–7 are for pixels across

the global land surface. In Figs. 8 and 9, trend analysis is

conducted for 110 unregulated wet and 87 dry catch-

ments for which we calculated E
wb

. Figure 8 shows

there is no correlation between trends in E
wb

and E
MTE

and weak but significant correlation between E
wb

and

EPML or EFu at p 5 0.1 for wet catchments. Correlations

between Ewb and EMTE, EPML, and Ewb are all signifi-

cant at p 5 0.001 for dry catchments but the regression

slope for the MTE method and the PML model are

much less than unity. Only the Fu model results in

a desired linear regression slope close to one and a high

R2 value. This is because precipitation appears explic-

itly in the Fu model [Eq. (2)] and because in dry

catchments trends in Ewb are highly correlated to those

in P (Fig. 9b). The inclusion of P in the Fu model clearly

improves predictions of trends in E for dry catchments

where P ’ E, but not for wet catchments where there

is only a weak correlation between trends in P and Ewb

(Fig. 9a).

Trends in E
PML

and E
Fu

for the 197 catchments were

also calculated using the SRB and NCEP available en-

ergy data. Table 3 shows statistics comparing trends in

EPML and EFu with those in Ewb. Although the ISCCP

product has the coarsest spatial resolution (2.58) amongst

the three, the trends in E
Fu

and E
PML

estimated by the

ISCCP product have the best linear correlation to those

in Ewb (Table 3). This is highlighted in wet catchments

where both trends in EPML and EFu forced by the ISCCP

data are significantly correlated ( p 5 0.053) to those in

Ewb, but not for the trends obtained from the other two.

In dry catchments, trends in E
PML

forced by the ISCCP

data have the highest R2 values while those for trends in

E
Fu

forced by the three radiation products are almost

the same.

The results shown in Figs. 8 and 9 may be biased be-

cause they were obtained from 5-yr moving averages,

which can increase the serial correlation in the data.

However, recalculation of the trends in EMTE, EPML,

E
Fu

, and E
wb

using 3-yr block averages yielded similar

results (data not shown); that is, weak but significant

correlation between E
wb

and E
PML

and E
Fu

but not be-

tween Ewb and EMTE in wet catchments, and strong

correlation in dry catchments.

The values of Ewb used above rely on data from

a range of catchment sizes. Small-area catchments typ-

ically cover one to several of the 0.58 pixels of the GPCC

precipitation data, and combining these with local runoff

measurements could inflate trends in E
wb

(i.e., P 2 Q)

compared to larger catchments. To examine whether this

adversely affects the results shown in Fig. 8, we iden-

tified 107 small-area catchments (500–5000 km2) and

90 large-area catchments (.5000 km2). Results from

the two groups (not shown) are similar to those shown

in Fig. 8—that is, trends in Ewb compare well to those

in E
MTE

, E
PML

, and E
Fu

in dry catchments, but not in

wet catchments. Yang et al. (2007) also found that

catchment area did not change the relationship between

Ewb and EFu for 108 catchments in China with areas

varying from 200 to 100 000 km2.

FIG. 7. Time series of annual A and EPML, both aggregated from grids of the 110 wet catchments. Values after

colons are the mean trend slopes. The offset in A between the ISCCP and SRB datasets does not appear in trends in

EPML because EPML is constrained by the Fu (1981) hydrometeorological model using each radiation dataset in-

dependently.
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5. Discussion

Our analysis has shown that decadal trends in evap-

oration calculated using water balances, Ewb of 110 wet

catchments are not matched by trends in E
MTE

. This

model-tree ensemble approach of Jung et al. (2010) uses

statistical relationships between evaporation rates measured

at 253 globally distributed flux stations and meteorological

FIG. 8. Comparison of trends in EMTE, EPML, and EFu estimated using the ISCCP radiation data vs Ewb for

(a),(c),(e) 110 wet catchments and (b),(d),(f) 87 dry catchments.
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drivers, including remotely sensed fraction of photo-

synthetically active radiation. Similarly in wet catch-

ments there are only weak correlation between trends in

E
wb

and E
Fu

, a hydrometeorological model, and be-

tween E
wb

and E
PML

, which is calculated using the

Penman–Monteith energy-balance equation coupled with

a simple biophysical model for surface conductance.

The lack of correlation between Ewb and any of EMTE,

EFu, or EPML may be due to uncertainties in Ewb caused

by errors in runoff and precipitation data for the se-

lected catchments. Catchment runoff data are measured

directly and hence are considered the most reliable in

this study. Errors in precipitation can be quite large in

regions where spatial interpolation is based on a sparse

network of rain gauges (Oki et al. 1999). Such un-

certainties are unlikely to explain the lack of correla-

tion because identical conclusions are reached using

two global precipitation datasets [GPCC: 0.58 grid cells

(Rudolf and Schneider 2004) or GPCP: 2.58 resolution

(Adler et al. 2003)]. A mismatch in scale between

runoff and precipitation data may contribute to large

trend values in Ewb (.610 mm yr21) in relatively small

catchments (,50 000 km2).

We note that remotely sensed radiation is a key input

to the two structurally different diagnostic models (EPML

and EFu) and thus the lack of correlation between trends

in these quantities and E
wb

for wet catchments seen in

Fig. 8 may result from uncertainties in magnitudes and

trends in available energy. Evidence for this is seen in

Fig. 6 where trends in A calculated using two remotely

sensed radiation (ISCCP and SRB) datasets and one

global forecast model data product (NCEP) result in

quite different patterns globally and for the catchments

analyzed in this paper (Fig. 7). These results suggest that

radiation data derived from satellites may not yet be

sufficiently accurate to explain trends in evaporation at

global and regional scales over the past quarter century.

Model structural limitations as well as errors in input

data may be responsible for the discrepancies in trends

in Ewb compared to those in EMTE, EFu, or EPML. In

a multimodel comparison study, Mueller et al. (2011)

found that simple diagnostic models as used in this study

provided means and standard deviations of E in global

datasets that were similar to estimates from more com-

plex land surface models and reanalysis datasets. All

models yielded uncertainties that exceeded 20% of mean

FIG. 9. Comparison of trends in Ewb and P for (a) 110 wet catchments and (b) 87 dry catchments.

TABLE 3. Regressions for trends in EPML and EFu vs those in Ewb for wet and dry catchments, respectively. Here y 5 EPML or EFu, and

x 5 Ewb (mm yr22).

Models Available energy products Wet catchments R2 p values Dry catchments R2 p values

PML ISCCP y 5 0.061x 1 1.25 0.034 0.053 y 5 0.33x 1 1.13 0.53 0.00

SRB y 5 20.02x 1 0.46 0.02 0.68 y 5 0.33x 20.77 0.44 0.00

NCEP y 5 0.012x 1 0.36 0.0016 0.68 y 5 0.25x 1 0.54 0.39 0.00

Fu ISCCP y 5 0.079x 1 0.039 0.026 0.093 y 5 0.85x 1 0.54 0.84 0.00

SRB y 5 20.023x 2 0.54 0.001 0.73 y 5 0.85x 2 0.33 0.86 0.00

NCEP y 5 20.0073x 2 0.70 0.0003 0.85 y 5 0.82x 1 0.32 0.86 0.00
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evaporation fluxes in most regions of the globe, and

Mueller et al. (2011) concluded that further collections

of ‘‘ground truth’’ observations are needed to constrain

model estimates of evaporation. Given such uncertainties

in the fluxes themselves, it is perhaps not surprising that

we are unable to reconcile trends in land surface evapo-

ration from water balance studies with those from models

using the currently available forcing data.

6. Conclusions

Improvements are needed in global datasets of pre-

cipitation, runoff, radiation, and meteorological forcing

before we can be confident in model estimates of the

magnitude and sign of trends in evaporation from land

surfaces. Effective combination of precipitation and soil

moisture information with satellite radiation and vege-

tation data will undoubtedly improve estimation of trends

in global E by hydrological models in the future.
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Le Moine, N., V. Andréassian, C. Perrin, and C. Michel, 2007: How

can rainfall-runoff models handle intercatchment ground-

water flows? Theoretical study based on 1040 French catchments.

Water Resour. Res., 43, W06428, doi:10.1029/2006WR005608.

Leuning, R., Y. Q. Zhang, A. Rajaud, H. Cleugh, and K. Tu, 2008:

A simple surface conductance model to estimate regional

evaporation using MODIS leaf area index and the Penman-

Monteith equation. Water Resour. Res., 44, W10419, doi:10.1029/

2007WR006562.

Milly, P. C. D., K. A. Dunne, and A. V. Vecchia, 2005: Global

pattern of trends in streamflow and water availability in a

changing climate. Nature, 438, 347–350.

Monteith, J. L., 1964: Evaporation and environment: The state and

movement of water in living organisms. 19th Symp. of the

Society of Experimental Biology, Cambridge University Press,

205–234.

Mueller, B., and Coauthors, 2011: Evaluation of global observations-

based evapotranspiration datasets and IPCC AR4 simulations.

Geophys. Res. Lett., 38, L06402, doi:10.1029/2010gl046230.

New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-

century space–time climate variability. Part II: Develop-

ment of 1901–96 monthly grids of terrestrial surface climate.

J. Climate, 13, 2217–2238.

Oki, T., and S. Kanae, 2006: Global hydrological cycles and world

water resources. Science, 313, 1068–1072.

——, T. Nishimura, and P. Dirmeyer, 1999: Assessment of annual

runoff from land surface models using Total Runoff Inte-

grating Pathways (TRIP). J. Meteor. Soc. Japan, 77, 235–255.

Peel, M. C., T. A. McMahon, and B. L. Finlayson, 2010: Vegetation

impact on mean annual evapotranspiration at a global catch-

ment scale. Water Resour. Res., 46, W09508, doi:10.1029/

2009WR008233.

Piao, S. L., P. Friedlingstein, P. Ciais, N. de Noblet-Ducoudre,

D. Labat, and S. Zaehle, 2007: Changes in climate and land use

have a larger direct impact than rising CO2 on global river

runoff trends. Proc. Natl. Acad. Sci. USA, 104, 15 242–15 247.

Priestley, C. H. B., and R. J. Taylor, 1972: On the assessment of

surface heat flux and evaporation using large-scale parame-

ters. Mon. Wea. Rev., 100, 81–92.

Roderick, M. L., and G. D. Farquhar, 2002: The cause of decreased

pan evaporation over the past 50 years. Science, 298, 1410–

1411.

Rudolf, B., and U. Schneider, 2004: Calculation of gridded pre-

cipitation data for the global land-surface using in-situ gauge

observations. Proc. Second Workshop of the Int. Precipitation

Working Group, Monterey, CA, IPWG, 231–247.

390 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 13

Pieterv
Highlight



Sen, P. K., 1968: Estimates of regression coefficient based on

Kendall’s tau. J. Amer. Stat. Assoc., 63, 1379–1389.

Teuling, A. J., and Coauthors, 2009: A regional perspective on

trends in continental evaporation. Geophys. Res. Lett., 36,
L02404, doi:10.1029/2008GL036584.

Trenberth, K. E., L. Smith, T. T. Qian, A. Dai, and J. Fasullo, 2007:

Estimates of the global water budget and its annual cycle using

observational and model data. J. Hydrometeor., 8, 758–769.

Vorosmarty, C. J., B. M. Fekete, M. Meybeck, and R. B. Lammers,

2000: Global system of rivers: Its role in organizing continental

land mass and defining land-to-ocean linkages. Global Bio-

geochem. Cycles, 14, 599–621.

——, M. Meybeck, B. Fekete, K. Sharma, P. Green, and J. P. M.

Syvitski, 2003: Anthropogenic sediment retention: Major

global impact from registered river impoundments. Global

Planet. Change, 39, 169–190.

Wild, M., and Coauthors, 2005: From dimming to brightening: Decadal

changes in solar radiation at Earth’s surface. Science, 308, 847–850.

——, J. Grieser, and C. Schaer, 2008: Combined surface solar

brightening and increasing greenhouse effect support recent

intensification of the global land-based hydrological cycle.

Geophys. Res. Lett., 35, L17706, doi:10.1029/2008GL034842.

Yang, D. W., F. B. Sun, Z. Y. Liu, Z. T. Cong, G. H. Ni, and Z. D.

Lei, 2007: Analyzing spatial and temporal variability of annual

water-energy balance in nonhumid regions of China using the

Budyko hypothesis. Water Resour. Res., 43, W04426, doi:10.1029/

2006WR005224.

Yue, S., P. Pilon, B. Phinney, and G. Cavadias, 2002: The influence

of autocorrelation on the ability to detect trend in hydrological

series. Hydrol. Processes, 16, 1807–1829.

Zhang, L., W. R. Dawes, and G. R. Walker, 2001: Response of

mean annual evapotranspiration to vegetation changes at

catchment scale. Water Resour. Res., 37, 701–708.

Zhang, X. B., F. W. Zwiers, G. C. Hegerl, F. H. Lambert, N. P.

Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007: Detection

of human influence on twentieth-century precipitation trends.

Nature, 448, 461–465.

Zhang, Y. C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I.

Mishchenko, 2004: Calculation of radiative fluxes from the

surface to top of atmosphere based on ISCCP and other global

data sets: Refinements of the radiative transfer model and

the input data. J. Geophys. Res., 109, D19105, doi:10.1029/

2003JD004457.

Zhang, Y. Q., R. Leuning, L. B. Hutley, J. Beringer, I. McHugh,

and J. P. Walker, 2010: Using long-term water balances to

parameterize surface conductances and calculate evaporation

at 0.058 spatial resolution. Water Resour. Res., 46, W05512,

doi:10.1029/2009WR008716.

FEBRUARY 2012 Z H A N G E T A L . 391


